Show simple item record

dc.contributor.advisorHenry Birdseye Weil.en_US
dc.contributor.authorYamada, Masahiro, S.M. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Integrated Design and Management Program.en_US
dc.date.accessioned2018-10-15T20:22:56Z
dc.date.available2018-10-15T20:22:56Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/118506
dc.descriptionThesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, System Design and Management Program, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 87-89).en_US
dc.description.abstractSubstituting non-renewable energy for renewable energy plays an important role for our sustainability, which is the common goal for human beings. However, several strategies by governments and companies exist to make this shift, because the priority of each strategy mainly depends on the relative costs and their regulations, which makes this shift complicated. This paper describes a model of the common causal loop diagram and applies it to three cases. Additionally, by building stock and flow model, the future dynamics are simulated by System Dynamics. Based on the casual loop diagram analysis, the renewable shift makes three phases. The first phase is making an ecosystem of renewables initiated by political support or guideline such establishing a low generation cost and making the power grid system flexible enough to accept renewables. The second phase is pushing the energy mix by private investment to capture the economic benefit including reducing electric bills with low-cost renewable energy, the merit of reputation and sustainability of business. The third phase aims at meeting the political target of the energy mix by political strategies, such as tax exemptions, subsidies and obligations for companies. Stock and flow model of System Dynamics is applied for the future of the Japanese renewable shift cases to illustrate which compositions of the casual loop are the key causes for dynamics. At first, the relative cost triggers the renewable shift not only for companies but also for utilities. After that, the difference of the energy mix of a company and its target decides how much the energy mix increases each year. These two factors decide the intensiveness of investment of a company, even though the relative cost is not an internal factor. Also, the capacity mix of a utility deals with the speed of the renewable shift.en_US
dc.description.statementofresponsibilityby Masahiro Yamada.en_US
dc.format.extent89 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering and Management Program.en_US
dc.subjectIntegrated Design and Management Program.en_US
dc.titleThe ecosystem of renewable energy shift and its future dynamicsen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Engineering and Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering and Management Programen_US
dc.contributor.departmentMassachusetts Institute of Technology. Integrated Design and Management Program.en_US
dc.identifier.oclc1054685866en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record