Show simple item record

dc.contributor.authorCaporini, M. A.
dc.contributor.authorMentink-Vigier, F.
dc.contributor.authorRosay, M.
dc.contributor.authorMaas, W. E.
dc.contributor.authorBaldus, M.
dc.contributor.authorVega, S.
dc.contributor.authorCorzilius, Bjorn
dc.contributor.authorWalish, Joseph John
dc.contributor.authorSwager, Timothy M
dc.contributor.authorGriffin, Robert Guy
dc.contributor.authorCan, Thach V
dc.date.accessioned2017-06-01T20:37:55Z
dc.date.available2017-06-01T20:37:55Z
dc.date.issued2014-08
dc.date.submitted2014-05
dc.identifier.issn0021-9606
dc.identifier.issn1089-7690
dc.identifier.urihttp://hdl.handle.net/1721.1/109520
dc.description.abstractWe report magic angle spinning, dynamic nuclear polarization (DNP) experiments at magnetic fields of 9.4 T, 14.1 T, and 18.8 T using the narrow line polarizing agents 1,3-bisdiphenylene-2-phenylallyl (BDPA) dispersed in polystyrene, and sulfonated-BDPA (SA-BDPA) and trityl OX063 in glassy glycerol/water matrices. The 1H DNP enhancement field profiles of the BDPA radicals exhibit a significant DNP Overhauser effect (OE) as well as a solid effect (SE) despite the fact that these samples are insulating solids. In contrast, trityl exhibits only a SE enhancement. Data suggest that the appearance of the OE is due to rather strong electron-nuclear hyperfine couplings present in BDPA and SA-BDPA, which are absent in trityl and perdeuterated BDPA (d21-BDPA). In addition, and in contrast to other DNP mechanisms such as the solid effect or cross effect, the experimental data suggest that the OE in non-conducting solids scales favorably with magnetic field, increasing in magnitude in going from 5 T, to 9.4 T, to 14.1 T, and to 18.8 T. Simulations using a model two spin system consisting of an electron hyperfine coupled to a 1H reproduce the essential features of the field profiles and indicate that the OE in these samples originates from the zero and double quantum cross relaxation induced by fluctuating hyperfine interactions between the intramolecular delocalized unpaired electrons and their neighboring nuclei, and that the size of these hyperfine couplings is crucial to the magnitude of the enhancements. Microwave power dependent studies show that the OE saturates at considerably lower power levels than the solid effect in the same samples. Our results provide new insights into the mechanism of the Overhauser effect, and also provide a new approach to perform DNP experiments in chemical, biophysical, and physical systems at high magnetic fields.en_US
dc.description.sponsorshipNational Institute of General Medical Sciences (U.S.) (Grant No. GM095843)en_US
dc.description.sponsorshipNational Institute for Biomedical Imaging and Bioengineering (U.S.) (NIBIB, Grant No. EB-002804))en_US
dc.description.sponsorshipNational Institute for Biomedical Imaging and Bioengineering (U.S.) (NIBIB, Grant No. EB002026)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4891866en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePMCen_US
dc.titleOverhauser effects in insulating solidsen_US
dc.typeArticleen_US
dc.identifier.citationCan, T. V., M. A. Caporini, F. Mentink-Vigier, B. Corzilius, J. J. Walish, M. Rosay, W. E. Maas, M. Baldus, S. Vega, T. M. Swager, and R. G. Griffin. "Overhauser effects in insulating solids." Journal of Chemical Physics 141, 064202 (2014). © 2014 AIP Publishing LLC.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentFrancis Bitter Magnet Laboratory (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorCan, Thach Van
dc.contributor.mitauthorCorzilius, Bjorn
dc.contributor.mitauthorWalish, Joseph John
dc.contributor.mitauthorSwager, Timothy M
dc.contributor.mitauthorGriffin, Robert Guy
dc.relation.journalJournal of Chemical Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCan, T. V.; Caporini, M. A.; Mentink-Vigier, F.; Corzilius, B.; Walish, J. J.; Rosay, M.; Maas, W. E.; Baldus, M.; Vega, S.; Swager, T. M.; Griffin, R. G.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9092-612X
dc.identifier.orcidhttps://orcid.org/0000-0003-1589-832X
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record