MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data-driven models for reliability prognostics of gas turbines

Author(s)
Kumar, Gaurev
Thumbnail
DownloadFull printable version (6.047Mb)
Other Contributors
Massachusetts Institute of Technology. Computation for Design and Optimization Program.
Advisor
Saurabh Amin.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis develops three data-driven models of a commercially operating gas turbine, and applies inference techniques for reliability prognostics. The models focus on capturing feature signals (continuous state) and operating modes (discrete state) that are representative of the remaining useful life of the solid welded rotor. The first model derives its structure from a non-Bayesian parametric hidden Markov model. The second and third models are based on Bayesian nonparametric methods, namely the hierarchical Dirchlet process, and can be viewed as extensions of the first model. For all three approaches, the model structure is first prescribed, parameter estimation procedures are then discussed, and lastly validation and prediction results are presented, using proposed degradation metrics. All three models are trained using five years of data, and prediction algorithms are tested on a sixth year of data. Results indicate that model 3 is superior, since it is able to detect new operating modes, which the other models fail to do. The turbine is based on a sequential combustion design and operates in the 50Hz wholesale electricity market. The rotor is the most critical asset of the machine and is subject to nonlinear loadings induced from three sources: i) day-to-day variations in total power generated by the turbine; ii) machine trips in high and low loading conditions; iii) downtimes due to scheduled maintenance and inspection events. These sources naturally lead to dynamics, where random (resp. forced) transitions occur due to switching in the operating mode (resp. trip and/or maintenance events). The degradation of the rotor is modeled by measuring the abnormality witnessed by the cooling air temperature within different modes. Generation companies can utilize these indicators for making strategic decisions such as maintenance scheduling and generation planning.
Description
Thesis: S.M., Massachusetts Institute of Technology, School of Engineering, Center for Computational Engineering, Computation for Design and Optimization Program, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 69-70).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/106960
Department
Massachusetts Institute of Technology. Computation for Design and Optimization Program
Publisher
Massachusetts Institute of Technology
Keywords
Computation for Design and Optimization Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.