Show simple item record

dc.contributor.authorLenzen, Christoph
dc.contributor.authorNewport, Calvin Charles
dc.contributor.authorLynch, Nancy Ann
dc.contributor.authorRadeva, Tsvetomira T.
dc.date.accessioned2016-01-15T02:33:01Z
dc.date.available2016-01-15T02:33:01Z
dc.date.issued2014-07
dc.identifier.isbn9781450329446
dc.identifier.urihttp://hdl.handle.net/1721.1/100845
dc.description.abstractWe argue that in the context of biology-inspired problems in computer science, in addition to studying the time complexity of solutions it is also important to study the selection complexity, a measure of how likely a given algorithmic strategy is to arise in nature. In this spirit, we propose a selection complexity metric χ for the ANTS problem [Feinerman et al.]. For algorithm A, we define χ(A) = b + log l, where b is the number of memory bits used by each agent and l bounds the fineness of available probabilities (agents use probabilities of at least 1/2[superscript l]). We consider n agents searching for a target in the plane, within an (unknown) distance D from the origin. We identify log log D as a crucial threshold for our selection complexity metric. We prove a new upper bound that achieves near-optimal speed-up of (D[superscript 2]/n +D) ⋅ 2[superscript O(l)] for χ(A) ≤ 3 log log D + O(1), which is asymptotically optimal if l∈ O(1). By comparison, previous algorithms achieving similar speed-up require χ(A) = Ω(log D). We show that this threshold is tight by proving that if χ(A) < log log D - ω(1), then with high probability the target is not found if each agent performs D[superscript 2-o(1)] moves. This constitutes a sizable gap to the straightforward Ω(D[superscript 2]/n + D) lower bound.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Contract FA9550-13-1-0042)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award 0939370-CCF)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award CCF-1217506)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award CCF-AF-0937274)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award CCF 1320279)en_US
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (Le 3107/1-1)en_US
dc.description.sponsorshipFord Motor Company. University Research Programen_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/2611462.2611463en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleTrade-offs between selection complexity and performance when searching the plane without communicationen_US
dc.typeArticleen_US
dc.identifier.citationChristoph Lenzen, Nancy Lynch, Calvin Newport, and Tsvetomira Radeva. 2014. Trade-offs between selection complexity and performance when searching the plane without communication. In Proceedings of the 2014 ACM symposium on Principles of distributed computing (PODC '14). ACM, New York, NY, USA, 252-261.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorLenzen, Christophen_US
dc.contributor.mitauthorLynch, Nancy Annen_US
dc.contributor.mitauthorRadeva, Tsvetomira T.en_US
dc.relation.journalProceedings of the 2014 ACM symposium on Principles of distributed computing (PODC '14)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsLenzen, Christoph; Lynch, Nancy; Newport, Calvin; Radeva, Tsvetomiraen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3045-265X
dc.identifier.orcidhttps://orcid.org/0000-0003-1261-6681
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record