Show simple item record

dc.contributor.authorGhaffari, Mohsen
dc.contributor.authorMusco, Cameron Nicholas
dc.contributor.authorRadeva, Tsvetomira T.
dc.contributor.authorLynch, Nancy Ann
dc.date.accessioned2016-01-15T01:30:30Z
dc.date.available2016-01-15T01:30:30Z
dc.date.issued2015-07
dc.identifier.isbn9781450336178
dc.identifier.urihttp://hdl.handle.net/1721.1/100843
dc.description.abstractWe introduce the study of the ant colony house-hunting problem from a distributed computing perspective. When an ant colony's nest becomes unsuitable due to size constraints or damage, the colony relocates to a new nest. The task of identifying and evaluating the quality of potential new nests is distributed among all ants. They must additionally reach consensus on a final nest choice and transport the full colony to this single new nest. Our goal is to use tools and techniques from distributed computing theory in order to gain insight into the house-hunting process. We develop a formal model for the house-hunting problem inspired by the behavior of the Temnothorax genus of ants. We then show a Omega(log n) lower bound on the time for all n ants to agree on one of k candidate nests. We also present two algorithms that solve the house-hunting problem in our model. The first algorithm solves the problem in optimal O(log n) time but exhibits some features not characteristic of natural ant behavior. The second algorithm runs in O(k log n) time and uses an extremely simple and natural rule for each ant to decide on the new nest.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Contract FA9550-13-1-0042)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award 0939370-CCF)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award CCF-AF-0937274)en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/2767386.2767426en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleDistributed House-Hunting in Ant Coloniesen_US
dc.typeArticleen_US
dc.identifier.citationMohsen Ghaffari, Cameron Musco, Tsvetomira Radeva, and Nancy Lynch. 2015. Distributed House-Hunting in Ant Colonies. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing (PODC '15). ACM, New York, NY, USA, 57-66.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorGhaffari, Mohsenen_US
dc.contributor.mitauthorMusco, Cameron Nicholasen_US
dc.contributor.mitauthorRadeva, Tsvetomira T.en_US
dc.contributor.mitauthorLynch, Nancy Annen_US
dc.relation.journalProceedings of the 2015 ACM Symposium on Principles of Distributed Computing (PODC '15)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsGhaffari, Mohsen; Musco, Cameron; Radeva, Tsvetomira; Lynch, Nancyen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2197-6806
dc.identifier.orcidhttps://orcid.org/0000-0003-3045-265X
dc.identifier.orcidhttps://orcid.org/0000-0003-4213-9898
dc.identifier.orcidhttps://orcid.org/0000-0003-1261-6681
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record