Show simple item record

dc.contributor.advisorEdwin I. Thomas, John D. Joannopoulos and Chiping Chen.en_US
dc.contributor.authorFink, Yoel, 1966-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Materials Science and Engineering.en_US
dc.date.accessioned2005-08-23T12:00:00Zen_US
dc.date.available2005-08-23T12:00:00Zen_US
dc.date.issued2000en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/9291
dc.descriptionThesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2000.en_US
dc.description"February 2000."en_US
dc.descriptionIncludes bibliographical references (p. 126-129).en_US
dc.description.abstractTwo novel and practical methods for controlling the propagation of light are presented: First. a design criterion that permits truly omnidirectional reflectivity for all polarizations of incident light over a wide selectable range of frequencies is derived and used in fabricating an all dielectric omnidirectional reflector consisting of multilayer films. Because the omnidirectionality criterion is general, it can be used to design omnidirectional reflectors in many frequency ranges of interest. Potential uses depend on the geometry of the system. For example, coating of an enclosure will result in an optical cavity. A hollow tube will produce a low-loss, broadband waveguide, planar film could be used as an efficient radiative heat barrier or collector in thermoelectric devices. A comprehensive framework2 for creating one, two and three dimensional photonic crystals out of self-assembling block copolymers has been formulated. In order to form useful band gaps in the visible regime, periodic dielectric structures made of typical block copolymers need to be modified to obtain appropriate characteristic distances and dielectric constants. Moreover, the absorption and defect concentration must also be ~ontrolled. This affords the opportunity to tap into the large structural repertoire, the flexibility and intrinsic tunability that these self-assembled block copolymer systems offer. A block copolymer was used to achieve a self assembled photonic band gap in the visible regime. By swelling the diblock copolymer with lower molecular weight constituents control over the location of the stop band across the visible regime is achieved, One and three-dimensional crystals have been formed by changing the volume fraction of the swelling media. Methods for incorporating defects of prescribed dimensions into the self-assembled structures have been explored leading to the construction of a self assembled microcavity light-emitting device.en_US
dc.description.statementofresponsibilityby Yoel Fink.en_US
dc.format.extent129 p.en_US
dc.format.extent9965538 bytes
dc.format.extent9965299 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectMaterials Science and Engineering.en_US
dc.titlePolymeric photonic crystalsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc45838391en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record