Show simple item record

dc.contributor.advisorDavid J. Perreault.en_US
dc.contributor.authorLi, Wei, Ph. D. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-11-18T19:12:27Z
dc.date.available2013-11-18T19:12:27Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82352
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 217-223).en_US
dc.description.abstractPower conversion for the myriad low-voltage electronic circuits in use today, including portable electronic devices, digital electronics, sensors and communication circuits, is becoming increasingly challenging due to the desire for lower voltages, higher conversion ratios and higher bandwidth. Future computation systems also pose a major challenge in energy delivery that is difficult to meet with existing devices and design strategies. To reduce interconnect bottlenecks and enable more flexible energy utilization, it is desired to deliver power across interconnects at high voltage and low current with on- or over-die transformation to low voltage and high current, while providing localized voltage regulation in numerous zones. This thesis introduces elements for hybrid GaN-Si dc-de power converters operating at very high frequencies (VHF, 30-300 MHz) for low-voltage applications. Contributions include development of a new VHF frequency multiplier inverter suitable for step-down power conversion, and a Si CMOS switched-capacitor step-down rectifier. These are applied to develop a prototype GaN-Si hybrid dc-dc converter operating at 50 MHz. Additionally, this thesis exploits these elements to propose an ac power delivery architecture for low-voltage electronics in which power is delivered across the interconnect to the load at VHF ac, with local on-die transformation and rectification to dc. With the proposed technologies and emerging passives, it is predicted that the ac power delivery system can achieve over 90 % efficiency with greater than 1 W/mm² power density and 5:1 voltage conversion ratio. A prototype system has been designed and fabricated using a TSMC 0.25 [mu]m CMOS process to validate the concept. It operates at 50 MHz with output power of 4 W. The prototype converter has 8:1 voltage conversion ratio with input voltage of 20 V and output voltage of 2.5 V. To the author's best knowledge, this is the first ac power delivery architecture for low-voltage electronics ever built and tested.en_US
dc.description.statementofresponsibilityby Wei Li.en_US
dc.format.extent223 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleVery-high-frequency low-voltage power deliveryen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc861743289en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record