Show simple item record

dc.contributor.advisorErich P. Ippen and Franz X. Kärtneren_US
dc.contributor.authorSander, Michelle Y. (Michelle Yen-Ling)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2012-12-13T18:49:00Z
dc.date.available2012-12-13T18:49:00Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/75647
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 175-188).en_US
dc.description.abstractFemtosecond lasers and the development of frequency combs have revolutionized multiple fields like metrology, spectroscopy, medical diagnostics and optical communications. However, to enable wider adoption of the technology and new applications like photonic sampling, optical arbitrary waveform generation or the calibration of astronomical spectrographs, multi-GHz repetition rate femtosecond lasers with robust performance metrics, low cost, and a compact footprint are highly desirable. In this thesis, different approaches to develop GHz mode-locked laser systems at telecommunication wavelengths are discussed and current achievements presented. Design aspects for constructing a long-term stable and compact fiber laser with 187 fs short pulses at a repetition rate of 1 GHz are covered. In order to scale the repetition rate into the multi- GHz regime, coherent pulse interleaving in novel thermally tunable waveguide interleavers is demonstrated at 10 GHz. A femtosecond erbium-doped waveguide laser is developed at GHz repetition rates and important design guidelines are provided. As saturable Bragg reflectors are crucial in all of the described systems to enable mode-locking, saturable absorber optimization is discussed and their optical performance compared. Thus, this research paves the way for compact, affordable high repetition rate fiber lasers and monolithically integrated femtosecond laser sources which can be combined on-chip with additional functionalities to develop novel photonic systems with impact on spectroscopy, sensing, telecommunications and biomedical applications.en_US
dc.description.statementofresponsibilityby Michelle Y. Sander.en_US
dc.format.extent188 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleHigh repetition rate fiber and integrated waveguide femtosecond lasersen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc818328607en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record