Show simple item record

dc.contributor.advisorXiao-Gang Wen.en_US
dc.contributor.authorVaezi, Seyyed Mir Abolhassanen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Physics.en_US
dc.date.accessioned2012-01-30T17:07:48Z
dc.date.available2012-01-30T17:07:48Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/68984
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 143-151).en_US
dc.description.abstractUntil three decades ago, our understanding of the condensed matter systems were based on two frameworks developed by Russian physicist Lev Landau: his theory of phase transition, and Fermi liquids. The Landau theory of phase transition and the Fermi liquid theory together, can successfully explain a wide range of phenomena from ferromagnetism and antiferromagnetism to the conventional superconductivity. However, in the last thirty years, many experiments including the fractional quantum Hall effect (QHE) have revolutionized our view of nature. For a system of electrons that is subject to a very strong interactions and/or strong correlations between electrons, these two frameworks may break down. There many phases of matter, e.g. spin liquids, that do not break any classical symmetry, but are separated by phase transition. These states has the so called topological order. Also, many of these states do not follow predictions of the Fermi liquid theory and have many exotic behaviors. A rather powerful technique to handle with these issues is the slave particle method. In the first part of this thesis, using a more general slave particle method we study the strongly correlated Hubbard model, whose ground state may represent a Fermi liquid state at two spatial dimensions. We study the phase diagram of this model and show that the gapped spin liquid can be realized on the both honeycomb and square lattices, within mean-field. We also investigate the effective low energy theory of these states. Some of them are subject to compact gauge fluctuations. We study instanton effect in them and show that instanton proliferation can destabilize some of them. Another interesting problem in which we are interested in is the copper based high temperature superconductors (HTSC). The parent state of cuprates materials (undoped case) is a Mott insulator whose ground state is proposed to be a spin liquid. Upon doping, many exotic phases appear, from high temperature superconductivity to the pseudogap phase with disjoint Fermi segments (Fermi arcs) instead of a closed Fermi surface, or the strange metal phase where the Fermi liquid theory breaks down and exhibits very unusual transport properties. The isotope effect in these materials is also very different from that of conventional superconductors. In the second part of this thesis we study the above mentioned problem in detail and explain them by appealing to the slave particle method.en_US
dc.description.statementofresponsibilityby Seyyed Mir Abolhassan Vaezi.en_US
dc.format.extent151 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectPhysics.en_US
dc.titleSlave particle study of the strongly correlated electronsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.oclc774035094en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record