MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Weak lensing flexion as a probe of galaxy cluster substructure

Author(s)
Cain, Benjamin Martin
Thumbnail
DownloadFull printable version (8.731Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Marshall W. Bautz and Enectali Figueroa-Feliciano.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Measuring galaxy cluster total masses and the amount of dark matter substructure within galaxy cluster haloes is a fundamental probe of the ACDM model of structure formation, as well as the interactions between baryonic and non-baryonic matter. In this thesis I approach the topic of cluster mass structure in two ways. With a combination of optical imaging, spectroscopy, and X-ray observations I determine that the cluster RCS043938-2904.7, while apparently anomalous initially due to its high optical richness and low X-ray surface brightness, is in fact an association of structures along the line of sight. Accounting for this structure brings the observed cluster properties into agreement with known scaling relations. I also present a novel method for measuring weak gravitational lensing flexion to inform mass measurements on small scales. While previously published methods for measuring flexion focus on measuring derived properties of the lensed images, such as shapelet coefficients or surface brightness moments, my method fits a fully mass-sheet-invariant parametrized Analytic Image Model (AIM) to the each galaxy image. This simple parametric model traces the distortion of lensed image isophotes. I tested the AIM method using simulated data images with realistic noise and a variety of input image properties, and I show that it successfully reproduces the input lensing fields. I also apply the AIM method for flexion measurement to Hubble Space Telescope observations of Abell 1689, and detect mass structure in that cluster using only flexion measured with the AIM method.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 129-133).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/68979
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.