Some Identities Concerning the Function Subst [x; y; z]
dc.contributor.author | Norton, Lewis M. | en_US |
dc.date.accessioned | 2004-10-04T14:39:23Z | |
dc.date.available | 2004-10-04T14:39:23Z | |
dc.date.issued | 1962-01-01 | en_US |
dc.identifier.other | AIM-037 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/6100 | |
dc.description | Revised March 1962 | en_US |
dc.description.abstract | The purpose of this paper is two-fold; 1) to explore the use of recursion induction in proving theorem about functions of symbolic expressions, in particular. 2) to investigate thoroughly the algebraic properties of the LISP function subst [x; y; z] by this method. The main result is embodied in Theorem 8. | en_US |
dc.format.extent | 2697815 bytes | |
dc.format.extent | 2120354 bytes | |
dc.format.mimetype | application/postscript | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en_US | |
dc.relation.ispartofseries | AIM-037 | en_US |
dc.title | Some Identities Concerning the Function Subst [x; y; z] | en_US |