MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dazl regulates mouse embryonic germ cell development

Author(s)
Gill, Mark E
Thumbnail
DownloadFull printable version (10.91Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Biology.
Advisor
David C. Page.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In the mouse, germ cells can undergo differentiation to become either oocytes or spermatozoa in response to sex of their gonadal environment. The nature of the germ cell-intrinsic aspects of this signaling have not been well studied. The earliest known sex-specific difference in germ cells is the initiation of meiosis in female, but not male, embryonic germ cells. Experiments were performed showing that germ cells of both sexes transit through a state, the meiosis competent germ cell, that is required for initiation of meiosis. Acquisition of this state requires the function of the germ cellspecific RNA binding protein DAZL. The sufficiency for the absence of meiosis to drive male germ cell differentiation was then tested by examining non-meiotic XX germ cells in the Dazl-deficient ovary. These cells did not exhibit male differentiation indicating that the absence of meiosis is not sufficient for male differentiation. XX Dazl-deficient germ cells also failed to exhibit normal female differentiation. In addition, XY Dazl-deficient germ cells do not display characteristics of either male or female germ cells. Taken together, these results indicate that germ cells must first undergo a sex non-specific differentiation step prior to acquiring sexual fate.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/58372
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.