Show simple item record

dc.contributor.advisorEytan Modiano.en_US
dc.contributor.authorZafer, Murtaza Abbasali, 1979-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2008-11-10T19:58:27Z
dc.date.available2008-11-10T19:58:27Z
dc.date.copyright2007en_US
dc.date.issued2007en_US
dc.identifier.urihttp://dspace.mit.edu/handle/1721.1/42241en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/42241
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.en_US
dc.descriptionIncludes bibliographical references (p. 195-202).en_US
dc.description.abstractRapid growth of the Internet and multimedia applications, combined with an increasingly ubiquitous deployment of wireless systems, has created a huge demand for providing enhanced data services over wireless networks. Invariably, meeting the quality-of-service requirements for such services translates into stricter packet-delay and throughput constraints on communication. In addition, wireless systems have stringent limitations on resources which necessitates that these must be utilized in the most efficient manner. In this thesis, we develop dynamic rate-control and scheduling algorithms to meet quality-of-service requirements on data while making efficient utilization of resources. Ideas from Network Calculus theory, Continuous-time Stochastic Optimal Control and Convex Optimization are utilized to obtain a theoretical understanding of the problems considered, and to develop various insights from the analysis. We, first, address energy-efficient transmission of deadline-constrained data over wire-less fading channels. In this setup, a transmitter with controllable transmission rate is considered, and the objective is to obtain a rate-control policy for transmitting deadline- constrained data with minimum total energy expenditure. Towards this end, a deterministic model is first considered and the optimal policy is obtained graphically using a novel cumulative curves methodology. We, then, consider stochastic channel fading and introduce the canonical problem of transmitting B units of data by deadline T over a Markov fading channel. This problem is referred to as the "BT-problem" and its optimal solution is obtained using techniques from stochastic control theory.en_US
dc.description.abstract(cont.) Among various extensions, specific setups involving variable deadlines on the data packets, known arrivals and a Poisson arrival process are considered. Using a graphical approach, transmission policies for these cases are obtained through a natural extension of the results obtained earlier. In the latter part of the thesis, a multi-user downlink model is considered which consists of a single transmitter serving multiple mobile users. Here, the quality-of-service requirement is to provide guaranteed average throughput to a certain class of users, and the objective is to obtain a multi-user scheduling policy that achieves this using the minimum number of time-slots. Based on a geometric approach we obtain the optimal policy for a general fading scenario, and, further specialize it to the case of symmetric Rayleigh fading to obtain closed-form relationships among the various performance metrics.en_US
dc.description.statementofresponsibilityby Murtaza Abbasali Zafer.en_US
dc.format.extent202 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/42241en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleDynamic rate-control and scheduling algorithms for quality-of-service in wireless networksen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc231627972en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record