Show simple item record

dc.contributor.advisorHenrik Schmidt.en_US
dc.contributor.authorEickstedt, Donald Patricken_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.date.accessioned2007-10-19T20:31:13Z
dc.date.available2007-10-19T20:31:13Z
dc.date.copyright2006en_US
dc.date.issued2006en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/39207
dc.descriptionThesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2006.en_US
dc.descriptionIncludes bibliographical references (leaves 209-213).en_US
dc.description.abstractIn this thesis, an innovative architecture for real-time adaptive and cooperative control of autonomous sensor platforms in a marine sensor network is described in the context of the autonomous oceanographic network scenario. This architecture has three major components, an intelligent, logical sensor that provides high-level environmental state information to a behavior-based autonomous vehicle control system, a new approach to behavior-based control of autonomous vehicles using multiple objective functions that allows reactive control in complex environments with multiple constraints, and an approach to cooperative robotics that is a hybrid between the swarm cooperation and intentional cooperation approaches. The mobility of the sensor platforms is a key advantage of this strategy, allowing dynamic optimization of the sensor locations with respect to the classification or localization of a process of interest including processes which can be time varying, not spatially isotropic and for which action is required in real-time. Experimental results are presented for a 2-D target tracking application in which fully autonomous surface craft using simulated bearing sensors acquire and track a moving target in open water.en_US
dc.description.abstract(cont.) In the first example, a single sensor vehicle adaptively tracks a target while simultaneously relaying the estimated track to a second vehicle acting as a classification platform. In the second example, two spatially distributed sensor vehicles adaptively track a moving target by fusing their sensor information to form a single target track estimate. In both cases the goal is to adapt the platform motion to minimize the uncertainty of the target track parameter estimates. The link between the sensor platform motion and the target track estimate uncertainty is fully derived and this information is used to develop the behaviors for the sensor platform control system. The experimental results clearly illustrate the significant processing gain that spatially distributed sensors can achieve over a single sensor when observing a dynamic phenomenon as well as the viability of behavior-based control for dealing with uncertainty in complex situations in marine sensor networks.en_US
dc.description.statementofresponsibilityby Donald Patrick Eickstedt.en_US
dc.format.extent213 leavesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subject/Woods Hole Oceanographic Institution. Joint Program in Oceanography/Applied Ocean Science and Engineering.en_US
dc.subjectMechanical Engineering.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.titleAdaptive sampling in autonomous marine sensor networksen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentJoint Program in Oceanography/Applied Ocean Science and Engineeringen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc76882061en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record