Show simple item record

dc.contributor.advisorDavid R. Karger.en_US
dc.contributor.authorRuhl, Jan Matthias, 1973-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2005-05-19T15:40:48Z
dc.date.available2005-05-19T15:40:48Z
dc.date.copyright2003en_US
dc.date.issued2003en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/17018
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.en_US
dc.descriptionIncludes bibliographical references (p. 155-163).en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.description.abstractAdvances in hardware design and manufacturing often lead to new ways in which problems can be solved computationally. In this thesis we explore fundamental problems in three computational models that are based on such recent advances. The first model is based on new chip architectures, where multiple independent processing units are placed on one chip, allowing for an unprecedented parallelism in hardware. We provide new scheduling algorithms for this computational model. The second model is motivated by peer-to-peer networks, where countless (often inexpensive) computing devices cooperate in distributed applications without any central control. We state and analyze new algorithms for load balancing and for locality-aware distributed data storage in peer-to-peer networks. The last model is based on extensions of the streaming model. It is an attempt to capture the class of problems that can be efficiently solved on massive data sets. We give a number of algorithms for this model, and compare it to other models that have been proposed for massive data set computations. Our algorithms and complexity results for these computational models follow the central thesis that it is an important part of theoretical computer science to model real-world computational structures, and that such effort is richly rewarded by a plethora of interesting and challenging problems.en_US
dc.description.statementofresponsibilityby Jan Matthias Ruhl.en_US
dc.format.extent163 p.en_US
dc.format.extent1188364 bytes
dc.format.extent1287306 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleEfficient algorithms for new computational modelsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc54457280en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record