Show simple item record

dc.contributor.advisorEnglund, Dirk
dc.contributor.authorWang, Hanfeng
dc.date.accessioned2025-12-03T16:12:08Z
dc.date.available2025-12-03T16:12:08Z
dc.date.issued2025-05
dc.date.submitted2025-08-14T19:45:08.269Z
dc.identifier.urihttps://hdl.handle.net/1721.1/164164
dc.description.abstractQuantum sensors have the potential to operate at fundamental physical performance limits. Among various quantum sensing platforms, solid-state spin emitters stand out due to advantageous characteristics such as room-temperature spin polarization and readout, atomic-scale spatial resolution, and extended coherence times. Despite these strengths, traditional optical detection methods exhibit low readout fidelity in solid-state ensembles, severely limiting their achievable sensitivity. This thesis addresses this limitation by coupling a solid-state emitter ensemble to a microwave cavity, forming a cavity quantum electrodynamics system. Our approach eliminates the need for photon collection required by conventional optical readout methods, and the resulting strongly coupled system allows efficient cavity-based probing of the solid-state spin ensemble. By exploiting the hybrid quantum system with cavity quantum electrodynamics, we achieve record-high sensitivity for solid-state quantum sensors, representing a substantial advancement toward achieving fundamental sensing limits.
dc.publisherMassachusetts Institute of Technology
dc.rightsIn Copyright - Educational Use Permitted
dc.rightsCopyright retained by author(s)
dc.rights.urihttps://rightsstatements.org/page/InC-EDU/1.0/
dc.titleSolid-state cavity quantum electrodynamics with spin ensembles
dc.typeThesis
dc.description.degreePh.D.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
mit.thesis.degreeDoctoral
thesis.degree.nameDoctor of Philosophy


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record