MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Certification of Deep Learning-based Dynamical System Identification

Author(s)
Zhang, Wang
Thumbnail
DownloadThesis PDF (5.338Mb)
Advisor
Daniel, Luca
Terms of use
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Copyright retained by author(s) https://creativecommons.org/licenses/by-sa/4.0/
Metadata
Show full item record
Abstract
Dynamical system identification, the reconstruction of the system governing equations from observations, has been studied for decades. With the recent emergence of deep learning techniques, neural network-based parameterization enriches this classical field by offering new capabilities in modeling complex systems. While promising advances have been made, these black box models face significant challenges due to their limited interpretability and lack of physical guarantees, raising concerns about their applicability in scenarios where trustworthiness is critical. In this thesis, we developed a comprehensive framework to analyze, understand and learn dynamical systems. We start with a contrastive learning method to capture system invariants (i.e., conserved quantities) from trajectory observation of dynamical systems. Building on these learned invariants or known priors, we introduce a projection layer for neural networks that guarantees the preservation of physics constraints in the learned dynamics models. This two-step approach significantly improves the trustworthiness and interpretability of the traditional black-box models. On top of this, we extend this methodology to learn physically meaningful embeddings corresponding to inter-system characteristics, enabling zero-shot meta-learning capabilities for dynamical system models. Finally, we reduce the bias gap in the classical neural network-based aleatoric uncertainty estimators. We identify overestimation issues in existing variance attenuation methods and propose a novel denoising-based approach that provides more accurate estimates of data uncertainty. This method not only applies to regression tasks but also extends to dynamical system observations.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/163435
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.