MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Resilient Object Perception for Robotics

Author(s)
Shi, Jingnan
Thumbnail
DownloadThesis PDF (31.19Mb)
Advisor
Carlone, Luca
Terms of use
In Copyright - Educational Use Permitted Copyright retained by author(s) https://rightsstatements.org/page/InC-EDU/1.0/
Metadata
Show full item record
Abstract
A broad array of applications, ranging from search and rescue to self-driving vehicles, requires robots to perceive and understand the geometry of objects in the environment. Object perception needs to reliably work in a variety of scenarios and preserve a desired level of performance in the face of outliers and shifts from the training domain. Obtaining such a level of performance requires robust estimation algorithms that are able to identify and reject outliers, as well as techniques to continually improve performance of learningbased perception modules during test-time. In this thesis, we address these challenges by proposing (1) certifiably optimal solvers and a graph-theoretic framework that together help achieve state-of-the-art pose estimation performance even under high outlier rates, (2) self-supervised object pose estimators that can improve performance during test-time with accuracy comparable to state-of-the-art supervised methods, and (3) a test-time adaptation method for both object shape reconstruction and pose estimation without the need for CAD models. Throughout the thesis, we demonstrate that by using a variety of tools from optimization and learning, we can develop resilient object perception systems that perform reliably in a wide range of conditions.
Date issued
2025-05
URI
https://hdl.handle.net/1721.1/163020
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.