Show simple item record

dc.contributor.authorGoniche, M.en_US
dc.contributor.authorOstuni, V.en_US
dc.contributor.authorBourdelle, C.en_US
dc.contributor.authorMaget, P.en_US
dc.contributor.authorArtaud, J.F.en_US
dc.contributor.authorBernard, J.M.en_US
dc.contributor.authorBobkov, V.en_US
dc.contributor.authorBucalossi, J.en_US
dc.contributor.authorClairet, F.en_US
dc.contributor.authorColas, L.en_US
dc.contributor.authorDesgranges, C.en_US
dc.contributor.authorDelpech, L.en_US
dc.contributor.authorDevynck, P.en_US
dc.contributor.authorDumont, R.en_US
dc.contributor.authorEkedahl, A.en_US
dc.contributor.authorFedorczak, N.en_US
dc.contributor.authorGarcia, J.en_US
dc.contributor.authorGaspar, J.en_US
dc.contributor.authorGil, C.en_US
dc.contributor.authorGuillemaut, C.en_US
dc.contributor.authorGunn, J.en_US
dc.contributor.authorHillairet, J.en_US
dc.contributor.authorKlepper, C.en_US
dc.contributor.authorLau, C.en_US
dc.contributor.authorLerche, E.en_US
dc.contributor.authorLombard, G.en_US
dc.contributor.authorManas, P.en_US
dc.contributor.authorMartin, E.H.en_US
dc.contributor.authorMazon, D.en_US
dc.contributor.authorMeyer, O.en_US
dc.contributor.authorMorales, J.en_US
dc.contributor.authorMoreau, Ph.en_US
dc.contributor.authorNardon, E.en_US
dc.contributor.authorNouailletas, R.en_US
dc.contributor.authorPegourié, B.en_US
dc.contributor.authorPeret, M.en_US
dc.contributor.authorPeysson, Y.en_US
dc.contributor.authorRegal-Mezin, X.en_US
dc.contributor.authorSabot, R.en_US
dc.contributor.authorShiraiwa, S.en_US
dc.contributor.authorUrbanzyck, G.en_US
dc.contributor.authorVermare, L.en_US
dc.contributor.authorVezinet, D.en_US
dc.contributor.authorWallace, Greg M.en_US
dc.contributor.authorWEST Teamen_US
dc.date.accessioned2025-03-21T20:19:34Z
dc.date.available2025-03-21T20:19:34Z
dc.date.issued2022-02
dc.identifier22ja002
dc.identifier.urihttps://hdl.handle.net/1721.1/158680
dc.descriptionSubmitted for publication in Nuclear Fusion
dc.description.abstractHigh power experiments, up to 9.2 MW with LHCD and ICRH, have been carried out in the full tungsten tokamak WEST. Quasi non inductive discharges have been achieved allowing to extend the plasma duration to 53s with stationary conditions in particular with respect to tungsten contamination. Transitions in H mode are obtained lasting up to 4s with weak energy increment at the power crossing the separatrix is close to the threshold. Hot L mode plasmas (Te(0)>3keV) with a confinement time following the ITER L96 scaling are routinely obtained. The weak aspect ratio dependence of this scaling law is confirmed. Tungsten accumulation is generally not an operational issue on WEST. Difficulty of burning through tungsten can prevent from accessing to a hot core plasma in the ramp-up phase or can lead to rapid collapse of the central temperature when radiation is enhanced by a slight decrease of the temperature. Apart few pulses post-boronization, the plasma radiation is rather high (Prad/Ptot~50%) and is dominated by tungsten. This fraction does not vary as the RF power is ramped up and is quite similar in ICRH and/or LHCD heated plasmas. An estimate of the contribution of the RF antennas to the plasma contamination in tungsten is given.
dc.publisherIOPen_US
dc.relation.isversionofdoi.org/10.1088/1741-4326/ac9691
dc.sourcePlasma Science and Fusion Centeren_US
dc.titleDeveloping high performance RF heating scenarios on the WEST tokamaken_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Plasma Science and Fusion Center
dc.relation.journalNuclear Fusion


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record