MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Plasma Science and Fusion Center (PSFC)
  • Journal Article Series (JA)
  • View Item
  • DSpace@MIT Home
  • Plasma Science and Fusion Center (PSFC)
  • Journal Article Series (JA)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Brazing characteristics, microstructure, and wettability of laser powder bed fusion additive manufactured GRCop-84 compared to CuCrZr and OFC, and brazing to titanium-zirconium-molybdenum alloy limiters

Author(s)
Seltzman, Andrew H.; Wukitch, S.J.
Thumbnail
Download22ja114_full.pdf (7.046Mb)
Metadata
Show full item record
Abstract
Laser Powder Bed Fusion (L-PBF) of Glenn Research Copper 84 (GRCop-84), a Cr2Nb (8 at. % Cr, 4 at. % Nb) precipitation hardened alloy, produces a fully dense, high conductivity alloy with a yield strength of 500 MPa and ultimate tensile strength (UTS) of 740 MPa with 20% elongation; superior to other competing copper alloys. Braze wetting characteristics of GRCop-84 with Ag-Cu-X, and Au-Cu brazes were similar to CuCrZr, but less than oxygen free copper. No difference in wetting was observed between infill and surface contour areas in L-PBF GRCop-84. Wet sanding to 240 grit (Ra=0.24 µm) was considered the optimal surface condition. Silver diffusing through GRCop-84 depleted Cr2Nb precipitates from the copper grain and deposited agglomerations of coarsened precipitates within silver-rich regions of intergranular diffusion once a density threshold was reached. Microstructure modification was minimized with 50Au-50Cu braze implying that silver caused precipitate coarsening and agglomeration, and not high temperature exposure. Coarsened precipitates were observed on the surface within braze pools implying a contribution to braze wetting. Palcusil-25, Ticusil, CuSil-ABA, and 50Au-50Cu brazes were suitable for brazing to unplated Titanium-Zirconium-Molybdenum (TZM), while sulfamate nickel plating to allows wetting with CuSil or other non-active brazes. Vacuum brazing techniques were developed to join a 1 mm thick layer of TZM to the front of additive manufactured GRCop-84 waveguides considering the brazing characteristics of both GRCop-84, TZM, and internal stress from the difference in coefficient in thermal expansion.
Description
Submitted for publication in Fusion Engineering and Design
Date issued
2022-07
URI
https://hdl.handle.net/1721.1/158557
Department
Massachusetts Institute of Technology. Plasma Science and Fusion Center
Journal
Fusion Engineering and Design
Publisher
Elsevier
Other identifiers
22ja114

Collections
  • Journal Article Series (JA)
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.