MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semi-infinite Homology of Floer spaces

Author(s)
Suwara, Piotr.
Thumbnail
Download1227278200-MIT.pdf (667.7Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Tomasz S. Mrowka.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This dissertation presents a framework for defining Floer homology of infinite-dimensional spaces with a functional. This approach is meant to generalize the traditional constructions of Floer homologies which mimic the construction of the Morse-Smale-Witten complex. To define Floer homology we use cycles modelled on infinitedimensional manifolds with corners, as described by Maksim Lipyanskiy, where the key is to impose appropriate compactness and polarization axioms on the cycles. We separate and carefully inspect these two types of axioms, paying special attention to correspondences, generalizing the definition of a polarization as well as axiomatizing the notion of a family of perturbations. The latter is used to define an intersection pairing and maps induced on Floer homology by correspondences. Moreover, we prove suspension isomorphisms and prove that this Floer homology agrees with Morse homology for finite-dimensional manifolds with a Palais-Smale functional. Finally, we explain how to apply this framework to Seiberg-Witten-Floer theory, defining Floer homology groups associated to rational homology spheres and their spinc-structures. Importantly, we prove moduli spaces of solutions to Seiberg-Witten equations induce maps on Floer homology in a functorial fashion.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, September, 2020
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 111-113).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/129324
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.