Show simple item record

dc.contributor.advisorCarolina Osorio.en_US
dc.contributor.authorLu, Jingen_US
dc.contributor.otherMassachusetts Institute of Technology. Operations Research Center.en_US
dc.date.accessioned2020-10-18T21:17:07Z
dc.date.available2020-10-18T21:17:07Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/128045
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 179-186).en_US
dc.description.abstractThis thesis tackles two major challenges of urban transportation optimization problems: (i) high-dimensionality and (ii) uncertainty in both demand and supply. These challenges are addressed from both modeling and algorithm design perspectives. The first part of this thesis focuses on the formulation of analytical transient stochastic link transmission models (LTM) that are computationally tractable and suitable for largescale network analysis and optimization. We first formulate a stochastic LTM based on the model of Osorio and Flötteröd (2015). We propose a formulation with enhanced scalability. In particular, the dimension of the state space is linear, rather than cubic, in the link's space capacity. We then propose a second formulation that has a state space of dimension two; it scales independently of the link's space capacity. Both link models are validated versus benchmark models, both analytical and simulation-based. The proposed models are used to address a probabilistic formulation of a city-wide signal control problem and are benchmarked versus other existing network models. Compared to the benchmarks, both models derive signal plans that perform systematically better considering various performance metrics. The second model, compared to the first model, reduces the computational runtime by at least two orders of magnitude. The second part of this thesis proposes a technique to enhance the computational efficiency of simulation-based optimization (SO) algorithms for high-dimensional discrete SO problems. The technique is based on an adaptive partitioning strategy. It is embedded within the Empirical Stochastic Branch-and-Bound (ESB&B) algorithm of Xu and Nelson (2013). This combination leads to a discrete SO algorithm that is both globally convergent and has good small sample performance. The proposed algorithm is validated and used to address a high-dimensional car-sharing optimization problem.en_US
dc.description.statementofresponsibilityby Jing Lu.en_US
dc.format.extent186 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectOperations Research Center.en_US
dc.titleProbabilistic models and optimization algorithms for large-scale transportation problemsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.departmentSloan School of Management
dc.identifier.oclc1200117901en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Sloan School of Management, Operations Research Centeren_US
dspace.imported2020-10-18T21:17:03Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentSloanen_US
mit.thesis.departmentOperResen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record