Show simple item record

dc.contributor.advisorDirk R. Englund.en_US
dc.contributor.authorFoy, Christopher,Ph. D.(Christopher C.)Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2020-09-03T17:42:04Z
dc.date.available2020-09-03T17:42:04Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/127017
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May, 2020en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 131-138).en_US
dc.description.abstractSpin systems are an increasingly important quantum-sensing platform. In particular, atomic defect centers in diamond called nitrogen-vacancy (NV) centers offer impressive room temperature imaging capabilities for both magnetic fields and temperature. NV-based sensing platforms have found utility in solid-state physics, biological systems, and vector magnetometry. These applications highlight the immense promise of NV quantum sensors. Despite this promise, the use of NV centers within commercial devices remains limited to date, with many impediments to transitioning this platform from the laboratory. This thesis describes the development of solid-state spin-integrated circuits (S3IC) for quantum sensing and control with the overarching goal of creating scalable NV platforms. We present two major experiments that develop S3IC. These expand the application space of NV centers and improve device functionality. The first application was to develop an NV spin microscope capable of wide-field temperature and magnetic field imaging to elucidate functional device behavior at the microscopic scale. The second experiment was integrating the essential components of an NV spin microscope, spin control and detection, with integrated electronics. In this manner, S3IC combines the exceptional sensitivity of NV centers with the robustness and scalability of modern electronic chip-scale platforms. This co-integration of spin systems into integrated electronics shows a potential path for migrating previous proof-of-principal sensing demonstrations into affordable packages that demonstrate both much greater system integration and custom electronic architectures. In short, this work demonstrates advances in NV-ensemble quantum sensing platforms and establishes a foundation for future integration efforts, perhaps inspiring innovations in both application space and the development of new quantum devices.en_US
dc.description.statementofresponsibilityby Christopher C. Foy.en_US
dc.format.extent138 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleSolid-state spin-integrated circuits for quantum sensing and controlen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1191624481en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2020-09-03T17:42:03Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record