MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Singular behaviour and long time behaviour of mean curvature flow

Author(s)
Sun, Ao,Ph. D.Massachusetts Institute of Technology.
Thumbnail
Download1191267830-MIT.pdf (799.0Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
William Minicozzi.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we investigate two asymptotic behaviours of the mean curvature flow. The first one is the asymptotic behaviour of singularities of the mean curvature flow, and the asymptotic limit is modelled by the tangent flows. The second one is the asymptotic behaviour of the mean curvature flow as time goes to infinity. We will study several problems related to the asymptotic behaviours. The first problem is the partial regularity of the limit. The partial regularity of mean curvature flow without any curvature assumptions was first studied by Ilmanen. We will follow the idea of Ilmanen to study the partial regularity of other asymptotic limit. In particular, we introduce a generalization of Colding-Minicozzi's entropy in a closed manifold, which plays a significant role. The second problem is the genericity of the tangent flows of mean curvature flow. The generic mean curvature flow was introduced by Colding-Minicozzi. Furthermore, they introduced mean curvature flow entropy and use it to study the generic tangent flows of mean curvature flow. We study the multiplicity of the generic tangent flow. In particular, we prove that the generic compact tangent flow of mean curvature flow of surfaces has multiplicity 1. This result partially addresses the famous multiplicity 1 conjecture of Ilmanen. One key idea is defining a local version of Colding-Minicozzi's entropy. We also discuss some related results. These results include a joint work with Zhichao Wang and a joint work with Julius Baldauf.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 125-130).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/126938
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.