| dc.contributor.advisor | Michael P. Short. | en_US |
| dc.contributor.author | Sergheyev, Keldin Nehmovitch. | en_US |
| dc.contributor.other | Massachusetts Institute of Technology. Department of Nuclear Science and Engineering. | en_US |
| dc.date.accessioned | 2020-01-08T19:44:05Z | |
| dc.date.available | 2020-01-08T19:44:05Z | |
| dc.date.copyright | 2019 | en_US |
| dc.date.issued | 2019 | en_US |
| dc.identifier.uri | https://hdl.handle.net/1721.1/123420 | |
| dc.description | Thesis: S.B., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2019 | en_US |
| dc.description | Cataloged from PDF version of thesis. | en_US |
| dc.description | Includes bibliographical references (pages 41-43). | en_US |
| dc.description.abstract | Lead sulfide (PbS) is an important semiconductor for infrared light detection, and use in space necessitates understanding how it evolves when damaged by ionizing radiation. Previous work in chemical bath deposition (CBD) resulted in thin films of epitaxially grown polycrystalline PbS uniformly doped with radioactive thorium 228 (Th-228), permitting convenient study of a self-irradiating sample. This thesis represents a continuation of that work by studying the evolution of thermal diffusivity and surface acoustic wave (SAW) speed in a self-irradiating PbS thin film using the non-contact, non-destructive transient grating spectroscopy (TGS) assay. Radiation damage is allowed to accumulate and TGS is used to take measurements before and after annealing. Damage was presumed to create new phonon-scattering defects, thus decreasing SAW speed and thermal diffusivity. However, after annealing, radiation damage caused a monotonic increase in both. Both parameters asymptotically approach a maximum, which indicates a radiation damage saturation point. Thermal diffusivity does not return to its pre-annealed value, indicating an unknown affect. A longer TGS study is recommended to eliminate latent effects, as well as a band gap time-evolution study and an x-ray diffraction study. | en_US |
| dc.description.statementofresponsibility | by Keldin Nehmovitch Sergheyev. | en_US |
| dc.format.extent | 43 pages | en_US |
| dc.language.iso | eng | en_US |
| dc.publisher | Massachusetts Institute of Technology | en_US |
| dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
| dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
| dc.subject | Nuclear Science and Engineering. | en_US |
| dc.title | Effect of self-irradiation damage on thermal diffusivity and SAW speed in a thorium-doped lead sulfide thin film | en_US |
| dc.type | Thesis | en_US |
| dc.description.degree | S.B. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Nuclear Science and Engineering | en_US |
| dc.identifier.oclc | 1134769362 | en_US |
| dc.description.collection | S.B. Massachusetts Institute of Technology, Department of Nuclear Science and Engineering | en_US |
| dspace.imported | 2020-01-08T19:44:04Z | en_US |
| mit.thesis.degree | Bachelor | en_US |
| mit.thesis.department | NucEng | en_US |