Show simple item record

dc.contributor.advisorDimitris Bertsimas.en_US
dc.contributor.authorNg, Yee Sian.en_US
dc.contributor.otherMassachusetts Institute of Technology. Operations Research Center.en_US
dc.date.accessioned2019-09-16T18:17:41Z
dc.date.available2019-09-16T18:17:41Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122100
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 163-176).en_US
dc.description.abstractWith the rising popularity of ride-sharing and alternative modes of transportation, there has been a renewed interest in transit planning to improve service quality and stem declining ridership. However, it often takes months of manual planning for operators to redesign and reschedule services in response to changing needs. To this end, we provide four models of transportation planning that are based on data and driven by optimization. A key aspect is the ability to provide certificates of optimality, while being practical in generating high-quality solutions in a short amount of time. We provide approaches to combinatorial problems in transit planning that scales up to city-sized networks. In transit network design, current tractable approaches only consider edges that exist, resulting in proposals that are closely tethered to the original network. We allow new transit links to be proposed and account for commuters transferring between different services. In integrated transit scheduling, we provide a way for transit providers to synchronize the timing of services in multimodal networks while ensuring regularity in the timetables of the individual services. This is made possible by taking the characteristics of transit demand patterns into account when designing tractable formulations. We also advance the state of the art in demand models for transportation optimization. In emergency medical services, we provide data-driven formulations that outperforms their probabilistic counterparts in ensuring coverage. This is achieved by replacing independence assumptions in probabilistic models and capturing the interactions of services in overlapping regions. In transit planning, we provide a unified framework that allows us to optimize frequencies and prices jointly in transit networks for minimizing total waiting time.en_US
dc.description.statementofresponsibilityby Yee Sian Ng.en_US
dc.format.extent176 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectOperations Research Center.en_US
dc.titleAdvances in data-driven models for transportationen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.departmentSloan School of Management
dc.identifier.oclc1119538884en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Sloan School of Management, Operations Research Centeren_US
dspace.imported2019-09-16T18:17:39Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentSloanen_US
mit.thesis.departmentOperResen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record