Show simple item record

dc.contributor.advisorGeoffrey S. D. Beach.en_US
dc.contributor.authorCaretta, Lucas Marcelo.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2019-09-16T16:41:48Z
dc.date.available2019-09-16T16:41:48Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122071
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractSpintronics is a research field that aims to understand and control magnetic spins on the nanoscale and should enable next-generation data storage and logic. A promising approach is to encode bits of information using nanoscale spin textures, such as chiral domain walls or skyrmions that can be translated by currents across racetrack-like wire devices. One technological and scientific challenge is to stabilize small spin textures and to move them efficiently with high velocities, which is critical for dense, fast memory. For the past decade, work has focused on using ferromagnetic heterostructures to host chiral spin textures. However, ferromagnets have fundamental limitations that inhibit further progress: large stray fields limit bit sizes and precessional dynamics limit operating speeds. In this thesis, we examine a broader class of multi-sublattice materials: ferrimagnets.en_US
dc.description.abstractWe show that by using ferrimagnets, the fundamental limits of ferromagnets can be overcome, realizing order-of-magnitude improvements in both size and speed. Using metallic, ferrimagnetic Pt/Gd₄₄Co₅₆/TaOx films with a sizeable Dzyaloshinskii-Moriya interaction (DMI), we realize a current-driven domain wall motion of 1.3 km s⁻¹ near the angular momentum compensation temperature and room-temperature-stable skyrmions with diameters close to 10 nm near the magnetic compensation temperature. For the first time, we show that the DMI is present in ferrimagnetic insulator garnet films and that the DMI necessitates a rare-earth ion in the magnetic insulator. Thickness dependent studies and interface engineering show that the DMI manifests at the ferrimagnetic insulator - substrate oxide interface.en_US
dc.description.abstractWe use a large spin-orbit torque from a Pt overlayer and the DMI to exploit ferrimagnetic dynamics, driving domain walls in low-damping and low-pinning GGG/TmIG/Pt heterostructures at velocities as high as 2.1 km s⁻¹. Moreover, by utilizing the ultra-low damping nature of Bi-YIG and an in-plane field, we can drive domain walls in GSGG/Bi-YIG/Pt at near relativistic velocities exceeding 4.0 km s-1, where the domain wall velocity is no longer limited by a velocity plateau defined by the in-plane field, but the magnon group velocity in Bi-YIG. These results show that multi-sublattice ferrimagnetic films are a promising materials system for next-generation data storage, paving a path forward for the field of spintronics.en_US
dc.description.sponsorshipFinancial support of the National Science Foundation Graduate Research Fellowship Program and the National GEM Consortium Fellowshipen_US
dc.description.statementofresponsibilityby Lucas Marcelo Caretta.en_US
dc.format.extent221 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleChiral spin textures and dynamics in multi-sublattice magnetic materialsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.identifier.oclc1117714816en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Materials Science and Engineeringen_US
dspace.imported2019-09-16T16:41:45Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentMatScien_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record