Show simple item record

dc.contributor.advisorMoungi G. Bawendi.en_US
dc.contributor.authorChen, Yue, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Chemistry.en_US
dc.date.accessioned2018-05-23T16:35:20Z
dc.date.available2018-05-23T16:35:20Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/115798
dc.descriptionThesis: Ph. D. in Physical Chemistry, Massachusetts Institute of Technology, Department of Chemistry, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThe primary focus of this thesis is to synthesize biocompatible luminescent nanocrystals for visible and short-wave infrared (1-2 [mu]m, SWIR) imaging applications. Quantum dots (QDs) have been promising fluorescent probes for biomedical imaging due to their high quantum yield (QY), narrow photoluminescence spectra, and excellent photostability. However, challenges remain to be solved to transfer the as-synthesized hydrophobic QD to aqueous solutions while maintaining the high QY and a compact size. This study involves the design and synthesis of a novel ligand that can be introduced to the established QD synthesis, producing norbornene functionalized QDs that can be readily phase transferred into water via norbornene/tetrazine click chemistry, meanwhile allowing flexible functionalization of the QDs by incorporating a functional group on the hydrophilic chain. This ligand system can be applied to a variety of carboxylic-ligand-stabilized QDs, with emission spectra spanning the visible and the SWIR region. The resulting water-soluble QDs exhibit a high QY, a small hydrodynamic diameter (HD), and excellent colloidal stability and pH stability. Further in vitro cell labeling experiments using azido-functionalized QDs demonstrates their potential for cell targeting applications. As in vivo imaging in the SWIR range has further reduced background noise from tissue scattering compared to traditional visible and near infrared (0.7-1 tm, NIR) imaging, images of higher contrast and better resolution can be readily obtained. The next challenge is to develop SWIR emitters that have high quantum efficiency and minimal toxicity, which is of critical importance in order to promote this technology for clinical applications. Our study found that the emission of luminescent gold nanoclusters can be tuned from the visible to the SWIR region by proper selection of ligands and post ligand modifications. The SWIR-emitting gold nanoclusters have a good QY, a HD that is small enough that they exhibit a rapid renal clearance, and images taken in the SWIR region show better resolution of the blood vessels than in the NIR region.en_US
dc.description.statementofresponsibilityby Yue Chen.en_US
dc.format.extent130 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titleSyntheses of biocompatible luminescent nanocrystals for visible and short-wave infrared imaging applicationsen_US
dc.typeThesisen_US
dc.description.degreePh. D. in Physical Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc1036988203en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record