MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advances in robust and adaptive optimization : algorithms, software, and insights

Author(s)
Dunning, Iain Robert
Thumbnail
DownloadFull printable version (1.377Mb)
Alternative title
Advances in RO and AO : algorithms, software, and insights
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Dimitris Bertsimas.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Optimization in the presence of uncertainty is at the heart of operations research. There are many approaches to modeling the nature of this uncertainty, but this thesis focuses on developing new algorithms, software, and insights for an approach that has risen in popularity over the last 15 years: robust optimization (RO), and its extension to decision making across time, adaptive optimization (AO). In the first chapter, we perform a computational study of two approaches for solving RO problems: "reformulation" and "cutting planes". Our results provide useful evidence for what types of problems each method excels in. In the second chapter, we present and analyze a new algorithm for multistage AO problems with both integer and continuous recourse decisions. The algorithm operates by iteratively partitioning the problem's uncertainty set, using the approximate solution at each iteration. We show that it quickly produces high-quality solutions. In the third chapter, we propose an AO approach to a general version of the process flexibility design problem, whereby we must decide which factories produce which products. We demonstrate significant savings for the price of flexibility versus simple but popular designs in the literature. In the fourth chapter, we describe computationally practical methods for solving problems with "relative" RO objective functions. We use combinations of absolute and relative worst-case objective functions to find "Pareto-efficient" solutions that combine aspects of both. We demonstrate through three in-depth case studies that these solutions are intuitive and perform well in simulation. In the fifth chapter, we describe JuMPeR, a software package for modeling RO and AO problems that builds on the JuMP modeling language. It supports many features including automatic reformulation, cutting plane generation, linear decision rules, and general data-driven uncertainty sets.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2016.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 215-220).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/105004
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.