This is an archived course. A more recent version may be available at ocw.mit.edu.

Lecture Notes

Lecture notes were posted after most lectures, summarizing the contents of the lecture. Sometimes these are detailed, and sometimes they give references in the following texts:

Buy at Amazon Hatcher. Algebraic Topology. Cambridge, New York, NY: Cambridge University Press, 2002. ISBN: 052179160X. (Available online.)

Buy at Amazon May. A Concise Course in Algebraic Topology. Chicago, IL: University of Chicago Press, 1999. ISBN: 0226511820 (cloth: alk. paper) and 0226511839 (pbk.: alk. paper). (PDF - 1.3 MB)

Brown, Edgar H., Jr. "Cohomology Theories." Ann. of Math 2, no. 75 (1962).

LEC # TOPICS REFERENCES
1 Category Theory (PDF)  
2 Compactly Generated Spaces (PDF)  
3 Pointed Spaces and Homotopy Groups (PDF)  
4 Simple Computations, the Action of the Fundamental Groupoid (PDF)  
5 Cofibrations, Well Pointedness, Weak Equivalences, Relative Homotopy (PDF)  
6 Pushouts and Pullbacks, the Homotopy Fiber (PDF)  
7 Cofibers (PDF)  
8 Puppe Sequences (PDF)  
9 Fibrations (PDF)  
10 Hopf Fibrations, Whitehead Theorem (PDF)  
11 Help! Whitehead Theorem and Cellular Approximation (PDF)  
12 Homotopy Excision (PDF )  
13 The Hurewicz Homomorphism (PDF)  
14 Proof of Hurewicz (PDF)  
15 Eilenberg-Maclane Spaces (PDF)  
16-20 Brown Representability Theorem; Principle G-bundles and Classifying Spaces; Existence of Classifying Spaces Brown Representability Theorem: Hatcher. Algebraic Topology. Section 4.E.

Principle G-bundles and Classifying Spaces: May. A Concise Course in Algebraic Topology. Chapter 23, section 8.

Existence of Classifying Spaces: Brown, Edgar H., Jr. "Cohomology Theories." Ann of Math 2, no. 75 (1962): 467-484. Section 5, application 1.
21 Spectral Sequences (PDF)  
22 The Spectral Sequence of a Filtered Complex (PDF)  
23-28 The Serre Spectral Sequence Hatcher. "Spectral Sequence Notes." Chapter 1.
29 Line Bundles (PDF)  
30 Induced Maps Between Classifying Spaces, H*(BU(n)) (PDF)  
31 Completion of a Deferred Proof, Whitney Sum, and Chern Classes (PDF)  
32 Properties of Chern Classes, the Splitting Principle (PDF)  
33 Chern Classes and Elementary Symmetric Polynomials (PDF)