MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Coded Shared Atomic Memory Algorithm for Message Passing Architectures

Author(s)
Cadambe, Viveck R.; Lynch, Nancy; Medard, Muriel; Musial, Peter
Thumbnail
DownloadMIT-CSAIL-TR-2014-015.pdf (342.8Kb)
Other Contributors
Theory of Computation
Advisor
Nancy Lynch
Metadata
Show full item record
Abstract
This paper considers the communication and storage costs of emulating atomic (linearizable) multi-writer multi-reader shared memory in distributed message-passing systems. The paper contains three main contributions: (1) We present a atomic shared-memory emulation algorithm that we call Coded Atomic Storage (CAS). This algorithm uses erasure coding methods. In a storage system with 'N' servers that is resilient to 'f' server failures, we show that the communication cost of CAS is N/(N-2f) . The storage cost of CAS is unbounded. (2) We present a modification of the CAS algorithm known as CAS with Garbage Collection (CASGC). The CASGC algorithm is parametrized by an integer 'd' and has a bounded storage cost. We show that in every execution where the number of write operations that are concurrent with a read operation is no bigger than 'd', the CASGC algorithm with parameter 'd' satisfies atomicity and liveness. We explicitly characterize the storage cost of CASGC, and show that it has the same communication cost as CASGC. (3) We describe an algorithm known as the Communication Cost Optimal Atomic Storage (CCOAS) algorithm that achieves a smaller communication cost than CAS and CASGC. In particular, CCOAS incurs read and write communication costs of N/(N-f) measured in terms of number of object values. We also discuss drawbacks of CCOAS as compared with CAS and CASGC.
Date issued
2014-08-01
URI
http://hdl.handle.net/1721.1/88551
Series/Report no.
MIT-CSAIL-TR-2014-015

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)
  • Technical Reports and Memos

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.