Now showing items 64-66 of 149

    • Multi-stage Multi-recursive-input Fully Convolutional Networks for Neuronal Boundary Detection 

      Shen, Wei; Wang, Bin; Jiang, Yuan; Wang, Yan; Yuille, Alan L. (Center for Brains, Minds and Machines (CBMM), 2017-10-01)
      In the field of connectomics, neuroscientists seek to identify cortical connectivity comprehensively. Neuronal boundary detection from the Electron Microscopy (EM) images is often done to assist the automatic reconstruction ...
    • Theory of Deep Learning IIb: Optimization Properties of SGD 

      Zhang, Chiyuan; Liao, Qianli; Rakhlin, Alexander; Miranda, Brando; Golowich, Noah; e.a. (Center for Brains, Minds and Machines (CBMM), 2017-12-27)
      In Theory IIb we characterize with a mix of theory and experiments the optimization of deep convolutional networks by Stochastic Gradient Descent. The main new result in this paper is theoretical and experimental evidence ...
    • Scene Graph Parsing as Dependency Parsing 

      Wang, Yu-Siang; Liu, Chenxi; Zeng, Xiaohui; Yuille, Alan L. (Center for Brains, Minds and Machines (CBMM), 2018-05-10)
      In this paper, we study the problem of parsing structured knowledge graphs from textual descrip- tions. In particular, we consider the scene graph representation that considers objects together with their attributes and ...