Now showing items 112-114 of 159

    • Probing the compositionality of intuitive functions 

      Schulz, Eric; Tenenbaum, Joshua B.; Duvenaud, David; Speekenbrink, Maarten; Gershman, Samuel J. (Center for Brains, Minds and Machines (CBMM), 2016-05-26)
      How do people learn about complex functional structure? Taking inspiration from other areas of cognitive science, we propose that this is accomplished by harnessing compositionality: complex structure is decomposed into ...
    • Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex 

      Liao, Qianli; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), arXiv, 2016-04-12)
      We discuss relations between Residual Networks (ResNet), Recurrent Neural Networks (RNNs) and the primate visual cortex. We begin with the observation that a shallow RNN is exactly equivalent to a very deep ResNet with ...
    • Building machines that learn and think like people 

      Lake, Brenden M.; Ullman, Tomer D.; Tenenbaum, Joshua B.; Gershman, Samuel J. (Center for Brains, Minds and Machines (CBMM), arXiv, 2016-04-01)
      Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object ...