Now showing items 100-102 of 159

    • Learning Mid-Level Auditory Codes from Natural Sound Statistics 

      Mlynarski, Wiktor; McDermott, Josh (Center for Brains, Minds and Machines (CBMM), arXiv, 2017-01-25)
      Interaction with the world requires an organism to transform sensory signals into representations in which behaviorally meaningful properties of the environment are made explicit. These representations are derived through ...
    • Measuring and modeling the perception of natural and unconstrained gaze in humans and machines 

      Harari, Daniel; Gao, Tao; Kanwisher, Nancy; Tenenbaum, Joshua; Ullman, Shimon (Center for Brains, Minds and Machines (CBMM), arXiv, 2016-11-28)
      Humans are remarkably adept at interpreting the gaze direction of other individuals in their surroundings. This skill is at the core of the ability to engage in joint visual attention, which is essential for establishing ...
    • Theory I: Why and When Can Deep Networks Avoid the Curse of Dimensionality? 

      Poggio, Tomaso; Mhaskar, Hrushikesh; Rosasco, Lorenzo; Miranda, Brando; Liao, Qianli (Center for Brains, Minds and Machines (CBMM), arXiv, 2016-11-23)
      [formerly titled "Why and When Can Deep – but Not Shallow – Networks Avoid the Curse of Dimensionality: a Review"] The paper reviews and extends an emerging body of theoretical results on deep learning including the ...