MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Advanced Materials for Micro- and Nano-Systems (AMMNS)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Advanced Materials for Micro- and Nano-Systems (AMMNS)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Strained Silicon on Silicon by Wafer Bonding and Layer Transfer from Relaxed SiGe Buffer

Author(s)
Isaacson, David M.; Taraschi, G.; Pitera, Arthur J.; Ariel, Nava; Fitzgerald, Eugene A.; Langdo, Thomas A.; ... Show more Show less
Thumbnail
DownloadAMMNS015.pdf (572.8Kb)
Metadata
Show full item record
Abstract
We report the creation of strained silicon on silicon (SSOS) substrate technology. The method uses a relaxed SiGe buffer as a template for inducing tensile strain in a Si layer, which is then bonded to another Si handle wafer. The original Si wafer and the relaxed SiGe buffer are subsequently removed, thereby transferring a strained-Si layer directly to Si substrate without intermediate SiGe or oxide layers. Complete removal of Ge from the structure was confirmed by cross-sectional transmission electron microscopy as well as secondary ion mass spectrometry. A plan-view transmission electron microscopy study of the strained-Si/Si interface reveals that the lattice-mismatch between the layers is accommodated by an orthogonal array of edge dislocations. This misfit dislocation array, which forms upon bonding, is geometrically necessary and has an average spacing of approximately 40nm, in excellent agreement with established dislocation theory. To our knowledge, this is the first study of a chemically homogeneous, yet lattice-mismatched, interface.
Date issued
2005-01
URI
http://hdl.handle.net/1721.1/7373
Series/Report no.
Advanced Materials for Micro- and Nano-Systems (AMMNS);
Keywords
layer transfer, wafer bonding, strained silicone, SiGe graded buffer

Collections
  • Advanced Materials for Micro- and Nano-Systems (AMMNS)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.