MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Center for Advanced Nuclear Energy Systems (CANES)
  • Advanced Nuclear Power Technology Program (ANP) - Technical Reports
  • View Item
  • DSpace@MIT Home
  • Center for Advanced Nuclear Energy Systems (CANES)
  • Advanced Nuclear Power Technology Program (ANP) - Technical Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modular Pebble Bed Reactor

Author(s)
Kadak, Andrew C.; Ballinger, Ronald G.; Driscoll, Michael J.; Yip, Sidney; Wilson, David Gordon; No, Hee Cheon; Wang, Jing; MacLean, Heather; Galen, Tamara; Wang, Chunyun; Lebenhaft, Julian; Zhai, Tieliang; Petti, David A.; Terry, William K.; Gougar, Hans D.; Ougouag, Abderrafi M.; Oh, Chang H.; Moore, Richard L.; Miller, Gregory K.; Maki, John T.; Smolik, Galen R.; Varacalle, Dominic J.; ... Show more Show less
DownloadANP-075.pdf (3.217Mb)
Other Contributors
Advanced Nuclear Power Technology Program (Massachusetts Institute of Technology)
Metadata
Show full item record
Abstract
This project is developing a fundamental conceptual design for a gas-cooled, modular, pebble bed reactor. Key technology areas associated with this design are being investigated which intend to address issues concerning fuel performance, safety, core neutronics and proliferation resistance, economics and waste disposal. Research has been initiated in the following areas: • Improved fuel particle performance • Reactor physics • Economics • Proliferation resistance • Power conversion system modeling • Safety analysis • Regulatory and licensing strategy Recent accomplishments include: • Developed four conceptual models for fuel particle failures that are currently being evaluated by a series of ABAQUS analyses. Analytical fits to the results are being performed over a range of important parameters using statistical/factorial tools. The fits will be used in a Monte Carlo fuel performance code, which is under development. • A fracture mechanics approach has been used to develop a failure probability model for the fuel particle, which has resulted in significant improvement over earlier models. • Investigation of fuel particle physio-chemical behavior has been initiated which includes the development of a fission gas release model, particle temperature distributions, internal particle pressure, migration of fission products, and chemical attack of fuel particle layers. • A balance of plant, steady-state thermal hydraulics model has been developed to represent all major components of a MPBR. Component models are being refined to accurately reflect transient performance. • A comparison between air and helium for use in the energy-conversion cycle of the MPBR has been completed and formed the basis of a master’s degree thesis. • Safety issues associated with air ingress are being evaluated. • Post shutdown, reactor heat removal characteristics are being evaluated by the Heating-7 code. • PEBBED, a fast deterministic neutronic code package suitable for numerous repetitive calculations has been developed. Use of the code has focused on scoping studies for MPBR design features and proliferation issues. Publication of an archival journal article covering this work is being prepared. • Detailed gas reactor physics calculations have also been performed with the MCNP and VSOP codes. Furthermore, studies on the proliferation resistance of the MPBR fuel cycle has been initiated using these code • Issues identified during the MPBR research has resulted in a NERI proposal dealing with turbo-machinery design being approved for funding beginning in FY01. Two other NERI proposals, dealing with the development of a burnup “meter” and modularization techniques, were also funded in which the MIT team will be a participant. • A South African MPBR fuel testing proposal is pending ($7.0M over nine years).
Date issued
2000-07
URI
http://hdl.handle.net/1721.1/67665
Publisher
Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Advanced Nuclear Power Program
Other identifiers
INEEL/EXT-2000-01034
Series/Report no.
MIT-ANP;PR-075

Collections
  • Advanced Nuclear Power Technology Program (ANP) - Technical Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.