MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Department of Aeronautics and Astronautics
  • Aerospace Computational Design Laboratory
  • Aerospace Computational Design Laboratory: Technical Reports
  • View Item
  • DSpace@MIT Home
  • Department of Aeronautics and Astronautics
  • Aerospace Computational Design Laboratory
  • Aerospace Computational Design Laboratory: Technical Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of Astronaut Reorientation Methods: A Computational and Experimental Study

Author(s)
Stirling, Leia Abigail
Thumbnail
DownloadACDL_TR-08-5.pdf (4.775Mb)
Metadata
Show full item record
Abstract
Past spaceflight missions have shown that astronauts adapt their motor-control strategies to the microgravity environment. Even though astronauts undergo hundreds of training hours, the strategies for locomotion and orientation are not specifically prescribed. The majority of an astronaut’s motion-control strategies are developed underwater. While underwater training can be beneficial in certain aspects, such as learning which orientations an astronaut will encounter and becoming familiar with task timelines, it is not effective for self-learned motor-control strategies. Further, the development of unfamiliar tasks, such as reorienting without external forces, will most likely not occur naturally. Self-rotations—human-body rotations without external torques—are not only helpful for reducing adaptation time, but can be a crucial safety countermeasure during extravehicular activity. In this thesis, computational and experimental methods are developed to create and analyze astronaut reorientation methods. The computational development of control methods for human motion planning offers a novel way to provide astronauts with maneuvers that are difficult to obtain experimentally in Earth gravity (1-G). Control of human-body dynamics can be posed as a motion-planning problem for which many different solution methods exist. This research considers two different frameworks—quantized control and optimal control. The quantized control method permits the development of complete maneuvers that are appropriate for humans to perform in high-stress situations by defining a set of specific finite-time trajectories called motion primitives. The implementation of an optimal control method allows for the refinement and further understanding of maneuver characteristics with an emphasis on how the central nervous system controls motion. Human rotation experiments provide further insight into the complexity of self-rotation techniques and a way to study the effects of training in a rigorous and realistic manner.
Date issued
2008-06
URI
http://hdl.handle.net/1721.1/57608
Publisher
Aerospace Computational Design Laboratory, Dept. of Aeronautics & Astronautics, Massachusetts Institute of Technology
Series/Report no.
ACDL Technical Reports;ACDL TR-08-5

Collections
  • Aerospace Computational Design Laboratory: Technical Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.