MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Operations Research Center
  • Operations Research Center Working Papers
  • View Item
  • DSpace@MIT Home
  • Operations Research Center
  • Operations Research Center Working Papers
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Polyhedral Intersection Theorem for Capacitated Spanning Trees

Author(s)
Hall, Leslie A.; Magnanti, Thomas L.
Thumbnail
DownloadOR-207-89.pdf (942.7Kb)
Metadata
Show full item record
Abstract
In a two-capacitated spanning tree of a complete graph with a distinguished root vertex v, every component of the induced subgraph on V\{v} has at most two vertices. We give a complete,non-redundant characterization of the polytope defined by the convex hull of the incidence vectors of two-capacitated spanning trees. This polytope is the intersection of the spanning tree polytope on the given graph and the matching polytope on the subgraph induced by removing the root node and its incident edges. This result is one of very few known cases in which the intersection of two integer polyhedra yields another integer polyhedron. We also give a complete polyhedral characterization of a related polytope, the 2-capacitated forest polytope.
Date issued
1989-12
URI
http://hdl.handle.net/1721.1/5370
Publisher
Massachusetts Institute of Technology, Operations Research Center
Series/Report no.
Operations Research Center Working Paper;OR 207-89

Collections
  • Operations Research Center Working Papers

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.