Show simple item record

dc.contributor.authorVranas, Peter B.en_US
dc.contributor.authorBertsimas, Dimitris J.en_US
dc.contributor.authorOdoni, Amedeo R.en_US
dc.date.accessioned2004-05-28T19:28:23Z
dc.date.available2004-05-28T19:28:23Z
dc.date.issued1992-06en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/5213
dc.description.abstractThe yearly congestion costs in the US airline industry are estimated to be of the order of $2 billion. In [6] we have introduced and studied generic integer programming models for the static multi-airport ground holding problem (GHP), the problem of assigning optimal ground holding delays in a general network of airports, so that the total (ground plus airborne) delay cost of all flights is minimized. The present paper is the first attempt to address the multi-airport GHP in a dynamic environment. We propose optimal or near-optimal algorithms to update ground-holding decisions as time progresses and more accurate weather (hence capacity) forecasts become available. We propose several pure IP formulations (most of them 0-1), which have the important advantages of being remarkably compact while capturing the essential aspects of the problem and of being sufficiently flexible to accommodate various degrees of modeling detail. For example, one formulation allows the dynamic updating of the mix between departure and arrival capacities by modifying runway use. These formulations enable one to assign and dynamically update ground holds to a sizable portion of the network of the major congested U.S. or European airports. We also present structural insights on the behaviour of the problem by means of computational results, and we find that our methods perform much better than a heuristic which may approximate, to some extent, current ground-holding practices.en_US
dc.format.extent2014258 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.publisherMassachusetts Institute of Technology, Operations Research Centeren_US
dc.relation.ispartofseriesOperations Research Center Working Paper;OR 265-92en_US
dc.titleDynamic Ground-Holding Policies for a Network of Airportsen_US
dc.typeWorking Paperen_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record