MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Operations Research Center
  • Operations Research Center Working Papers
  • View Item
  • DSpace@MIT Home
  • Operations Research Center
  • Operations Research Center Working Papers
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Theoretical Efficiency of A Shifted Barrier Function Algorithm for Linear Programming

Author(s)
Freund, Robert M.
Thumbnail
DownloadOR-194-89.pdf (1.688Mb)
Metadata
Show full item record
Abstract
This paper examines the theoretical efficiency of solving a standard-form linear program by solving a sequence of shifted-barrier problems of the form minimize cTx - n (xj + ehj) j.,1 x s.t. Ax = b , x + e h > , for a given and fixed shift vector h > 0, and for a sequence of values of > 0 that converges to zero. The resulting sequence of solutions to the shifted barrier problems will converge to a solution to the standard form linear program. The advantage of using the shiftedbarrier approach is that a starting feasible solution is unnecessary, and there is no need for a Phase I-Phase II approach to solving the linear program, either directly or through the addition of an artificial variable. Furthermore, the algorithm can be initiated with a "warm start," i.e., an initial guess of a primal solution x that need not be feasible. The number of iterations needed to solve the linear program to a desired level of accuracy will depend on a measure of how close the initial solution x is to being feasible. The number of iterations will also depend on the judicious choice of the shift vector h . If an approximate center of the dual feasible region is known, then h can be chosen so that the guaranteed fractional decrease in e at each iteration is (1 - 1/(6 i)) , which contributes a factor of 6 ii to the number of iterations needed to solve the problem. The paper also analyzes the complexity of computing an approximate center of the dual feasible region from a "warm start," i.e., an initial (possibly infeasible) guess ir of a solution to the center problem of the dual. Key Words: linear program, interior-point algorithm, center, barrier function, shifted-barrier function, Newton step.
Date issued
1989-04
URI
http://hdl.handle.net/1721.1/5185
Department
Massachusetts Institute of Technology. Operations Research Center
Publisher
Massachusetts Institute of Technology, Operations Research Center
Series/Report no.
Operations Research Center Working Paper;OR 194-89

Collections
  • Operations Research Center Working Papers

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.