MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal Design of Transonic Fan Blade Leading Edge Shape Using CFD and Simultaneous Perturbation Stochastic Approximation Method

Author(s)
Xing, X.Q.; Damodaran, Murali
Thumbnail
DownloadHPCES015.pdf (259.6Kb)
Metadata
Show full item record
Abstract
Simultaneous Perturbation Stochastic Approximation method has attracted considerable application in many different areas such as statistical parameter estimation, feedback control, simulation-based optimization, signal & image processing, and experimental design. In this paper, its performance as a viable optimization tool is demonstrated by applying it first to a simple wing geometry design problem for which the objective function is described by an empirical formula from aircraft design practice and then it is used in a transonic fan blade design problem in which the objective function is not represented by any explicit function but is estimated at each design iteration by a computational fluid dynamics algorithm for solving the Navier-Stokes equations
Date issued
2002-01
URI
http://hdl.handle.net/1721.1/4019
Series/Report no.
High Performance Computation for Engineered Systems (HPCES);
Keywords
global optimization, simultaneous perturbation stochastic approximation method, simulated annealing, transonic fan design

Collections
  • High Performance Computation for Engineered Systems (HPCES)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.