MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Solution Methodologies for the Smallest Enclosing Circle Problem

Author(s)
Xu, Sheng; Freund, Robert M.; Sun, Jie
Thumbnail
DownloadHPCES024.pdf (171.4Kb)
Metadata
Show full item record
Abstract
Given a set of circles C = {c₁, ..., cn}on the Euclidean plane with centers {(a₁, b₁), ..., (an, b<sub>n</sub>)}and radii {r₁..., r<n},the smallest enclosing circle (of fixed circles) problem is to find the circle of minimum radius that encloses all circles in C. We survey four known approaches for this problem, including a second order cone reformulation, a subgradient approach, a quadratic programming scheme, and a randomized incremental algorithm. For the last algorithm we also give some implementation details. It turns out the quadratic programming scheme outperforms the other three in our computational experiment.
Date issued
2002-01
URI
http://hdl.handle.net/1721.1/4015
Series/Report no.
High Performance Computation for Engineered Systems (HPCES);
Keywords
computational geometry, optimization

Collections
  • High Performance Computation for Engineered Systems (HPCES)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.