MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • High Performance Computation for Engineered Systems (HPCES)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computing Upper and Lower Bounds for the J-Integral in Two-Dimensional Linear Elasticity

Author(s)
Xuan, Z.C.; Lee, Kwok Hong; Patera, Anthony T.; Peraire, Jaime
Thumbnail
DownloadHPCES004.pdf (1.894Mb)
Metadata
Show full item record
Abstract
We present an a-posteriori method for computing rigorous upper and lower bounds of the J-integral in two dimensional linear elasticity. The J-integral, which is typically expressed as a contour integral, is recast as a surface integral which yields a quadratic continuous functional of the displacement. By expanding the quadratic output about an approximate finite element solution, the output is expressed as a known computable quantity plus linear and quadratic functionals of the solution error. The quadratic component is bounded by the energy norm of the error scaled by a continuity constant, which is determined explicitly. The linear component is expressed as an inner product of the errors in the displacement and in a computed adjoint solution, and bounded using standard a-posteriori error estimation techniques. The method is illustrated with two fracture problems in plane strain elasticity.
Date issued
2004-01
URI
http://hdl.handle.net/1721.1/3881
Series/Report no.
High Performance Computation for Engineered Systems (HPCES);
Keywords
J-integral, fracture mechanics, linear elasticity

Collections
  • High Performance Computation for Engineered Systems (HPCES)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.