Show simple item record

dc.contributor.authorSauer-Budge, A.M.
dc.contributor.authorHuerta, A.
dc.contributor.authorBonet, J.
dc.contributor.authorPeraire, Jaime
dc.date.accessioned2003-11-17T17:21:07Z
dc.date.available2003-11-17T17:21:07Z
dc.date.issued2003-01
dc.identifier.urihttp://hdl.handle.net/1721.1/3698
dc.description.abstractWe present a method for Poisson’s equation that computes guaranteed upper and lower bounds for the values of linear functional outputs of the exact weak solution of the infinite dimensional continuum problem using traditional finite element approximations. The guarantee holds uniformly for any level of refinement, not just in the asymptotic limit of refinement. Given a finite element solution and its output adjoint solution, the method can be used to provide a certificate of precision for the output with an asymptotic complexity which is linear in the number of elements in the finite element discretization.en
dc.description.sponsorshipSingapore-MIT Alliance (SMA)en
dc.format.extent229367 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.relation.ispartofseriesHigh Performance Computation for Engineered Systems (HPCES);
dc.subjectfinite elementen
dc.subjectoutput boundsen
dc.subjecta posteriori error estimationen
dc.subjectPoisson equationen
dc.titleComputing Bounds for Linear Functionals of Exact Weak Solutions to Poisson’s Equationen
dc.typeArticleen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record