MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Fast Approximation of the Bilateral Filter using a Signal Processing Approach

Author(s)
Paris, Sylvain; Durand, Fredo
Thumbnail
DownloadMIT-CSAIL-TR-2006-073.pdf (11.02Mb)
Additional downloads
Other Contributors
Computer Graphics
Advisor
Fredo Durand
Metadata
Show full item record
Abstract
The bilateral filter is a nonlinear filter that smoothes a signal while preserving strong edges. It has demonstrated great effectiveness for a variety of problems in computer vision and computer graphics, and fast versions have been proposed. Unfortunately, little is known about the accuracy of such accelerations. In this paper, we propose a new signal-processing analysis of the bilateral filter which complements the recent studies that analyzed it as a PDE or as a robust statistical estimator. The key to our analysis is to express the filter in a higher-dimensional space where the signal intensity is added to the original domain dimensions. Importantly, this signal-processing perspective allows us to develop a novel bilateral filtering acceleration using downsampling in space and intensity. This affords a principled expression of accuracy in terms of bandwidth and sampling. The bilateral filter can be expressed as linear convolutions in this augmented space followed by two simple nonlinearities. This allows us to derive criteria for downsampling the key operations and achieving important acceleration of the bilateral filter. We show that, for the same running time, our method is more accurate than previous acceleration techniques. Typically, we are able to process a 2~megapixel image using our acceleration technique in less than a second, and have the result be visually similar to the exact computation that takes several tens of minutes. The acceleration is most effective with large spatial kernels. Furthermore, this approach extends naturally to color images and cross bilateral filtering.
Date issued
2006-11-09
URI
http://hdl.handle.net/1721.1/34876
Other identifiers
MIT-CSAIL-TR-2006-073
Series/Report no.
Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory
Keywords
color image processing, cross bilateral filter, edge-preserving filter

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.