dc.contributor.advisor | Leslie Kaelbling | |
dc.contributor.author | Ortiz, Luis E. | |
dc.contributor.author | Schapire, Robert E. | |
dc.contributor.author | Kakade, Sham M. | |
dc.contributor.other | Learning and Intelligent Systems | |
dc.date.accessioned | 2006-03-20T19:24:59Z | |
dc.date.available | 2006-03-20T19:24:59Z | |
dc.date.issued | 2006-03-20 | |
dc.identifier.other | MIT-CSAIL-TR-2006-021 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/31339 | |
dc.description.abstract | We study maximum entropy correlated equilibria in (multi-player)games and provide two gradient-based algorithms that are guaranteedto converge to such equilibria. Although we do not provideconvergence rates for these algorithms, they do have strong connectionsto other algorithms (such as iterative scaling) which are effectiveheuristics for tasks such as statistical estimation. | |
dc.format.extent | 15 p. | |
dc.format.extent | 301190 bytes | |
dc.format.extent | 876790 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/postscript | |
dc.language.iso | en_US | |
dc.relation.ispartofseries | Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory | |
dc.subject | Game Theory, Graphical Games, Graphical Models, Normal-form Games, Optimization | |
dc.title | Maximum Entropy Correlated Equilibria | |