Show simple item record

dc.contributor.advisorLeslie Kaelbling
dc.contributor.authorOrtiz, Luis E.
dc.contributor.authorSchapire, Robert E.
dc.contributor.authorKakade, Sham M.
dc.contributor.otherLearning and Intelligent Systems
dc.date.accessioned2006-03-20T19:24:59Z
dc.date.available2006-03-20T19:24:59Z
dc.date.issued2006-03-20
dc.identifier.otherMIT-CSAIL-TR-2006-021
dc.identifier.urihttp://hdl.handle.net/1721.1/31339
dc.description.abstractWe study maximum entropy correlated equilibria in (multi-player)games and provide two gradient-based algorithms that are guaranteedto converge to such equilibria. Although we do not provideconvergence rates for these algorithms, they do have strong connectionsto other algorithms (such as iterative scaling) which are effectiveheuristics for tasks such as statistical estimation.
dc.format.extent15 p.
dc.format.extent301190 bytes
dc.format.extent876790 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.language.isoen_US
dc.relation.ispartofseriesMassachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory
dc.subjectGame Theory, Graphical Games, Graphical Models, Normal-form Games, Optimization
dc.titleMaximum Entropy Correlated Equilibria


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record