Show simple item record

dc.contributor.authorBindschadler, M.
dc.contributor.authorOsborn, E. A.
dc.contributor.authorDewey, C. F. Jr
dc.contributor.authorMcGrath, J. L.
dc.date.accessioned2005-09-01T12:00:00Zen_US
dc.date.available2005-09-01T12:00:00Zen_US
dc.date.issued2004-05
dc.identifier.urihttp://hdl.handle.net/1721.1/26696
dc.descriptionBiophysical Journal, 2004en
dc.description.abstractWe have derived a broad, deterministic model of the steady-state actin cycle that includes its major regulatory mechanisms. Ours is the first model to solve the complete nucleotide profile within filaments, a feature that determines the dynamics and geometry of actin networks at the leading edges of motile cells, and one that has challenged investigators developing models to interpret steady-state experiments. We arrived at the nucleotide profile through analytic and numerical approaches that completely agree. Our model reproduces behaviors seen in numerous experiments with purified proteins, but allows a detailed inspection of the concentrations and fluxes that might exist in these experiments. These inspections provide new insight into the mechanisms that determine the rate of actin filament treadmilling. Specifically, we find that mechanisms for enhancing Pi release from the ADP-Pi intermediate on filaments, for increasing the off rate of ADP-bound subunits at pointed ends, and the multiple, simultaneous functions of profilin, make unique and essential contributions to increased treadmilling. In combination, these mechanisms have a theoretical capacity to increase treadmilling to levels limited only by the amount of available actin. This limitation arises because as the cycle becomes more dynamic, it tends toward the unpolymerized state.en
dc.format.extent364500 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen
dc.publisherBiophysical Societyen
dc.subjectActin Cycleen
dc.subjectnucleotide profileen
dc.subjectactin filamenten
dc.titleA Mechanistic Model of the Actin Cycleen
dc.typeArticleen
dc.identifier.citationBiophysical Journal, 86, p. 2720-2739, (2004)en
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record