MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Department of Mechanical Engineering
  • Michael S. Triantafyllou
  • Publications
  • View Item
  • DSpace@MIT Home
  • Department of Mechanical Engineering
  • Michael S. Triantafyllou
  • Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Three-dimensional flow structures and vorticity control in fish-like swimming

Author(s)
Zhu, Q.; Wolfgang, M.J.; Yue, D.K.P.; Triantafyllou, M.S.
Thumbnail
DownloadTriantafyllou_2002_Three.pdf (891.1Kb)
Terms of use
Copyright: Cambridge University Press This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Metadata
Show full item record
Abstract
We employ a three-dimensional, nonlinear inviscid numerical method, in conjunction with experimental data from live fish and from a fish-like robotic mechanism, to establish the three-dimensional features of the flow around a fish-like body swimming in a straight line, and to identify the principal mechanisms of vorticity control employed in fish-like swimming. The computations contain no structural model for the fish and hence no recoil correction. First, we show the near-body flow structure produced by the travelling-wave undulations of the bodies of a tuna and a giant danio. As revealed in cross-sectional planes, for tuna the flow contains dominant features resembling the flow around a two-dimensional oscillating plate over most of the length of the fish body. For the giant danio, on the other hand, a mixed longitudinal-transverse structure appears along the hind part of the body. We also investigate the interaction of the body-generated vortices with the oscillating caudal fin and with tail-generated vorticity. Two distinct vorticity interaction modes are identified: the first mode results in high thrust and is generated by constructive pairing of body-generated vorticity with same-sign tail-generated vorticity, resulting in the formation of a strong thrust wake; the second corresponds to high propulsive efficiency and is generated by destructive pairing of body-generated vorticity with opposite-sign tail-generated vorticity, resulting in the formation of a weak thrust wake.
Date issued
2002
URI
http://hdl.handle.net/1721.1/25620
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Cambridge University Press
Citation
Journal of Fluid Mechanics, 468, p.1-28 (2002)
Keywords
flow structures, vorticity control, fish-like

Collections
  • Publications

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.