MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Department of Mechanical Engineering
  • Michael S. Triantafyllou
  • Publications
  • View Item
  • DSpace@MIT Home
  • Department of Mechanical Engineering
  • Michael S. Triantafyllou
  • Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Vortex-induced vibrations of a cylinder with tripping wires

Author(s)
Hover, F.S.; Tvedt, H.; Triantafyllou, M.S.
Thumbnail
DownloadTriantafyllou_2001_Vortex.pdf (601.8Kb)
Terms of use
Copyright: Cambridge University Press This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Metadata
Show full item record
Abstract
Thin wires are attached on the outer surface and parallel to the axis of a smooth circular cylinder in a steady cross-stream, modelling the effect of protrusions and attachments. The impact of the wires on wake properties, and vortex-induced loads and vibration are studied at Reynolds numbers up to 4.6 X 10^4, with 3.0 X 10^4 as a focus point. For a stationary cylinder, wires cause significant reductions in drag and lift coefficients as well as an increase in the Strouhal number to a value around 0.25-0.27. For a cylinder forced to oscillate harmonically, the main observed wire effects are: (a) an earlier onset of frequency lock-in, when compared with the smooth cylinder case; (b) at moderate amplitude/cylinder diameter (A=D) ratios (0.2 and 0.5), changes in the phase of wake velocity and of lift with respect to motion are translated to higher forcing frequencies, and (c) at A=D = 1:0, no excitation region exists; the lift force is always dissipative. The flow-induced response of a flexibly mounted cylinder with attached wires is significantly altered as well, even far away from lock-in. Parameterizing the response using nominal reduced velocity Vrn = U/fnD, we found that frequency lock-in occurs and lift phase angles change through 180deg at Vrn=4.9; anemometry in the wake confirms that a mode transition accompanies this premature lock-in. A plateau of constant response is established in the range Vrn = 5.1-6.0, reducing the peak amplitude moderately, and then vibrations are drastically reduced or eliminated above Vrn = 6.0. The vortex-induced vibration response of the cylinder with wires is extremely sensitive to angular bias near the critical value of Vrn = 6.0, and moderately so in the regime of suppressed vibration.
Date issued
2001
URI
http://hdl.handle.net/1721.1/25619
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Cambridge University Press
Citation
Journal of Fluid Mechanics, 448, p.175-195 (2001)
Keywords
vortex-induced, reynolds number

Collections
  • Publications

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.