MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Department of Mechanical Engineering
  • Michael S. Triantafyllou
  • Publications
  • View Item
  • DSpace@MIT Home
  • Department of Mechanical Engineering
  • Michael S. Triantafyllou
  • Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Vortical patterns behind a tapered cylinder oscillating transversely

Author(s)
Techet, A. H.; Hover, F. S.; Triantafyllou, M.S.
Thumbnail
DownloadTriantafyllou_1998_Vortical.pdf (982.7Kb)
Terms of use
Copyright: Cambridge University Press This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Metadata
Show full item record
Abstract
Visualization studies of the flow behind an oscillating tapered cylinder are performed at Reynolds numbers from 400 to 1500. The cylinder has taper ratio 40:1 and is moving at constant forward speed U while being forced to oscillate harmonically in the transverse direction. It is shown that within the lock-in region and above a threshold amplitude, no cells form and, instead, a single frequency of response dominates the entire span. Within certain frequency ranges a single mode dominates in the wake, consisting of shedding along the entire span of either two vortices per cycle (`2S' mode), or four vortices per cycle (`2P' mode); but within specific parametric ranges a hybrid mode is observed, consisting of a `2S' pattern along the part of the span with the larger diameter and a `2P' pattern along the part of the span with the smaller diameter. A distinct vortex split connects the two patterns which are phaselocked and have the same frequency. The hybrid mode is periodic, unlike vortex dislocations, and the location of the vortex split remains stable and repeatable, within one to two diameters, depending on the amplitude and frequency of oscillation and the Reynolds number.
Date issued
1998
URI
http://hdl.handle.net/1721.1/25615
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Cambridge University Press
Citation
Journal of Fluid Mechanics, 363, p.79-96 (1998)
Keywords
vorticity

Collections
  • Publications

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.